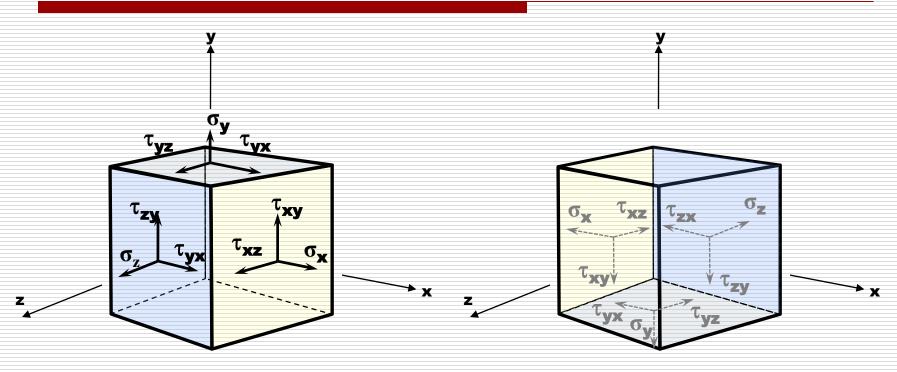
PE-CE: Lecture 2 Review of Elasticity

LECTURE OUTLINE

- Stress Tensor
- Equilibrium
- Stress Transformations
- Principal Stress
- Mohr's Circle For Stress
- Strain Displacement Relations

Stress at a Point Shown in the Tensile (+) Direction



Surfaces with a Positive Directed Area Normal

Surfaces with a Negative Directed Area Normal

Stress Tensor

$$\begin{bmatrix} \boldsymbol{\sigma} \end{bmatrix} = \begin{bmatrix} \boldsymbol{\sigma}_{x} & \boldsymbol{\tau}_{xy} & \boldsymbol{\tau}_{xz} \\ \boldsymbol{\tau}_{yx} & \boldsymbol{\sigma}_{y} & \boldsymbol{\tau}_{yz} \\ \boldsymbol{\tau}_{zx} & \boldsymbol{\tau}_{zy} & \boldsymbol{\sigma}_{z} \end{bmatrix}$$

Equilibrium Equations Sum of the Moments

$$\tau_{xy} = \tau_{yx}$$

$$au_{yz} = au_{zy}$$

$$au_{xz} = au_{zx}$$

Stress Tensor

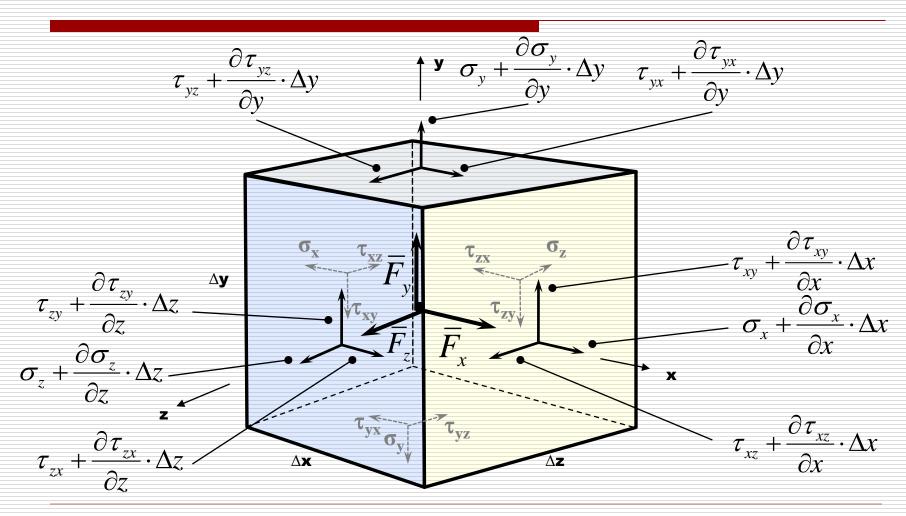
$$[\sigma] = \begin{bmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{bmatrix}$$

$$= \begin{bmatrix} \sigma_{xx} & \sigma_{xy} & \sigma_{xz} \\ \sigma_{yx} & \sigma_{yy} & \sigma_{yz} \\ \sigma_{zx} & \sigma_{zy} & \sigma_{zz} \end{bmatrix} = \sigma_{ij}$$

$$= \begin{bmatrix} \tau_{xx} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \tau_{yy} & \tau_{yz} \\ \tau_{xy} & \tau_{xy} & \tau_{zz} \end{bmatrix} = \tau_{ij}$$

$$\tau_{xy}$$

Element with Finite Dimensions



Equilibrium Equations Sum of the Forces

$$\frac{\partial \sigma_{x}}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \tau_{xz}}{\partial z} + \overline{F}_{x} = \mathbf{0}$$

$$\frac{\partial \tau_{xy}}{\partial x} + \frac{\partial \sigma_{y}}{\partial y} + \frac{\partial \tau_{yz}}{\partial z} + \overline{F}_{y} = \mathbf{0}$$

$$\frac{\partial \tau_{xz}}{\partial x} + \frac{\partial \tau_{yz}}{\partial y} + \frac{\partial \sigma_{z}}{\partial z} + \overline{F}_{z} = \mathbf{0}$$

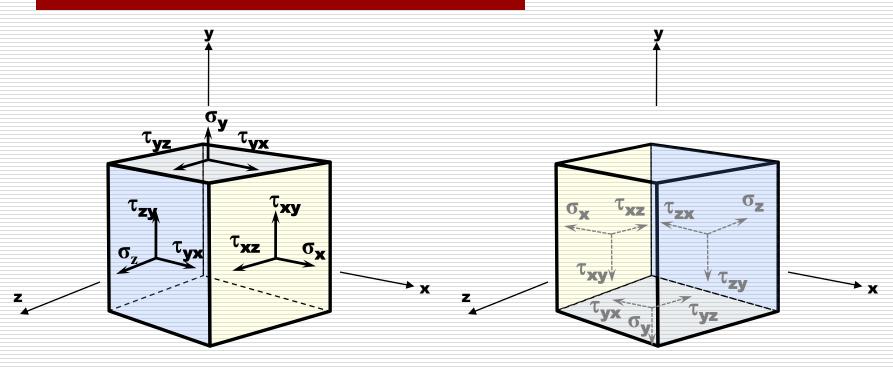
Example

The stress field within an elastic structural member is expressed as follows:

$$\sigma_x = -x^3 + y^2$$
, $\tau_{xy} = 5z + 2y^2$, $\tau_{xz} = xz^3 + x^2y$
 $\sigma_y = 2x^3 + .5y^2$, $\tau_{yz} = 0$, $\sigma_z = 4y^2 - z^3$

Determine the body force distribution required for equilibrium.

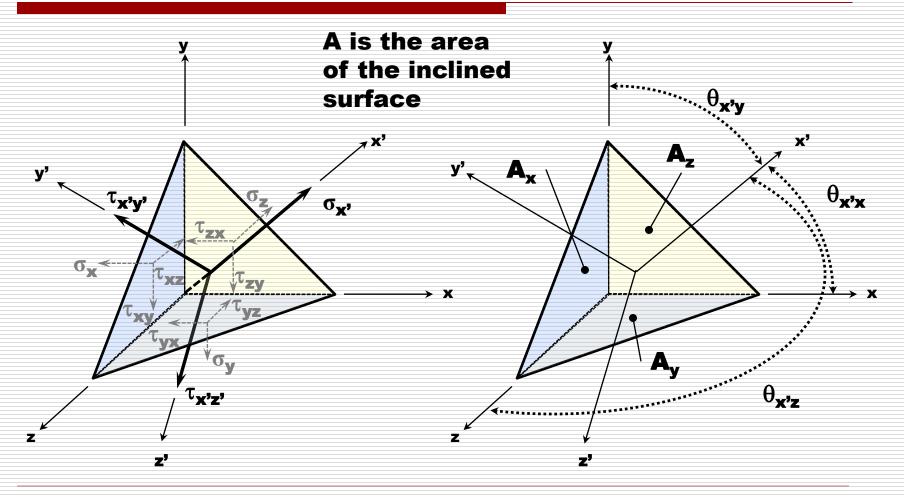
Stress at a Point Shown in the Tensile (+) Direction



Surfaces with a Positive Directed Area Normal

Surfaces with a Negative Directed Area Normal

Transforming Stress in Three Dimensions



Transformation Equations

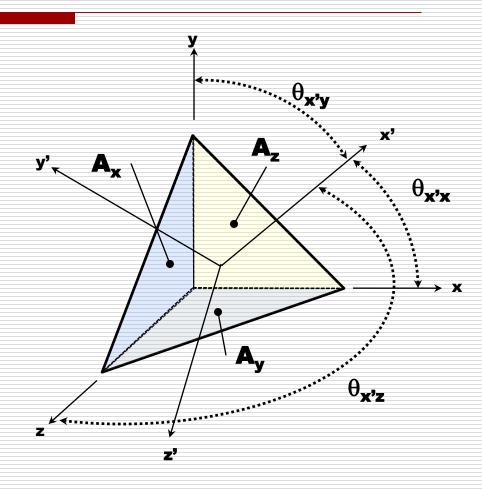
$$\begin{split} \sigma_{x'} &= \sigma_x \cdot n_{x'x}^2 + \sigma_y \cdot n_{x'y}^2 + \sigma_z \cdot n_{x'z}^2 + 2 \cdot \tau_{xy} \cdot n_{x'x} \cdot n_{x'y} + 2 \cdot \tau_{yz} \cdot n_{x'y} \cdot n_{x'z} + 2 \cdot \tau_{zx} \cdot n_{x'z} \cdot n_{x'x} \\ \sigma_{y'} &= \sigma_x \cdot n_{y'x}^2 + \sigma_y \cdot n_{y'y}^2 + \sigma_z \cdot n_{y'z}^2 + 2 \cdot \tau_{xy} \cdot n_{y'x} \cdot n_{y'y} + 2 \cdot \tau_{yz} \cdot n_{y'y} \cdot n_{y'z} + 2 \cdot \tau_{zx} \cdot n_{y'z} \cdot n_{y'x} \\ \sigma_{z'} &= \sigma_x \cdot n_{z'x}^2 + \sigma_y \cdot n_{z'y}^2 + \sigma_z \cdot n_{z'z}^2 + 2 \cdot \tau_{xy} \cdot n_{z'x} \cdot n_{z'y} + 2 \cdot \tau_{yz} \cdot n_{z'y} \cdot n_{z'z} + 2 \cdot \tau_{zx} \cdot n_{z'z} \cdot n_{z'x} \\ \tau_{x'y'} &= \sigma_x \cdot n_{x'x} \cdot n_{y'x} + \sigma_y \cdot n_{x'y} \cdot n_{y'y} + \sigma_z \cdot n_{x'z} \cdot n_{y'z} + \tau_{xy} \cdot (n_{x'x} \cdot n_{y'y} + n_{x'y} \cdot n_{y'x}) \\ &+ \tau_{yz} \cdot (n_{x'y} \cdot n_{y'z} + n_{x'z} \cdot n_{y'y}) + \tau_{zx} \cdot (n_{x'x} \cdot n_{y'z} + n_{x'z} \cdot n_{y'x}) \\ \tau_{z'x'} &= \sigma_x \cdot n_{x'x} \cdot n_{z'x} + \sigma_y \cdot n_{x'y} \cdot n_{z'y} + \sigma_z \cdot n_{x'z} \cdot n_{z'z} + \tau_{xy} \cdot (n_{x'x} \cdot n_{z'y} + n_{x'y} \cdot n_{z'x}) \\ &+ \tau_{yz} \cdot (n_{x'y} \cdot n_{z'z} + n_{x'z} \cdot n_{z'y}) + \tau_{zx} \cdot (n_{x'x} \cdot n_{z'z} + n_{x'z} \cdot n_{z'x}) \\ \tau_{y'z'} &= \sigma_x \cdot n_{y'x} \cdot n_{z'z} + \sigma_y \cdot n_{y'y} \cdot n_{z'y} + \sigma_z \cdot n_{y'z} \cdot n_{z'z} + \tau_{xy} \cdot (n_{y'x} \cdot n_{z'y} + n_{y'y} \cdot n_{z'x}) \\ + \tau_{yz} \cdot (n_{y'y} \cdot n_{z'z} + n_{y'z} \cdot n_{z'y}) + \tau_{zx} \cdot (n_{y'x} \cdot n_{z'z} + n_{y'z} \cdot n_{z'x}) \\ + \tau_{yz} \cdot (n_{y'y} \cdot n_{z'z} + n_{y'z} \cdot n_{z'y}) + \tau_{zx} \cdot (n_{y'x} \cdot n_{z'z} + n_{y'z} \cdot n_{z'x}) \end{split}$$

Inverting the Stress Tensor

$$[\sigma]_{x'y'z'} = [T] \cdot [\sigma]_{xyz} \cdot [T]^T$$

$$T = \begin{bmatrix} n_{x',x} & n_{x',y} & n_{x',z} \\ n_{y',x} & n_{y',y} & n_{y',z} \\ n_{z',x} & n_{z',y} & n_{z',z} \end{bmatrix}$$

$$n_{i'j} = \cos(\theta_{i'j})$$



Example 1:

Write the transformation Matrix for the following:

- First a positive 45° about z axis
- Second a positive 30° about the new x' axis

$$T1 = \begin{bmatrix} 0.7017 & 0.7017 & 0 \\ -0.7017 & 0.7017 & 0 \\ 0 & 0 & 1 \end{bmatrix} \qquad T2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.866 & 0.5 \\ 0 & -0.5 & 0.866 \end{bmatrix}$$

$$T2*T1 = \begin{bmatrix} 0.7071 & 0.7071 & 0 \\ -0.6124 & 0.6124 & 0.5 \\ 0.3536 & -0.3536 & 0.866 \end{bmatrix}$$

Solution to Example 1:

Write the transformation Matrix for the following: -First a positive 45° about z axis

$$T1 = \begin{bmatrix} 0.7017 & 0.7017 & 0 \\ -0.7017 & 0.7017 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Second a positive 30° about the new x' axis

$$T2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.866 & 0.5 \\ 0 & -0.5 & 0.866 \end{bmatrix}$$

$$T2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0.866 & 0.5 \\ 0 & -0.5 & 0.866 \end{bmatrix} \qquad T2*T1 = \begin{bmatrix} 0.7071 & 0.7071 & 0 \\ -0.6124 & 0.6124 & 0.5 \\ 0.3536 & -0.3536 & 0.866 \end{bmatrix}$$

Example 2:

The stress tensor at a point in a machine element with respect to the inertial coordinate system is

$$[\sigma] = \begin{bmatrix} 50 & 10 & 0 \\ 10 & 20 & 40 \\ 0 & 40 & 30 \end{bmatrix} MPa$$

Determine the state of stress if the stress element is rotated 45° counterclockwise about the z axis followed by 30° about the new x' axis.

Solution to Example 2:

Stress Transformation [45.0 1.15 32.0]

$$\left[\sigma\right]_{x'y'z'} = \left[T\right] \cdot \left[\sigma\right]_{xyz} \cdot \left[T\right]^{T} = \begin{vmatrix} 1.15 & 50.7 & 16.3 \end{vmatrix} MPa$$

32.0 16.3 4.25

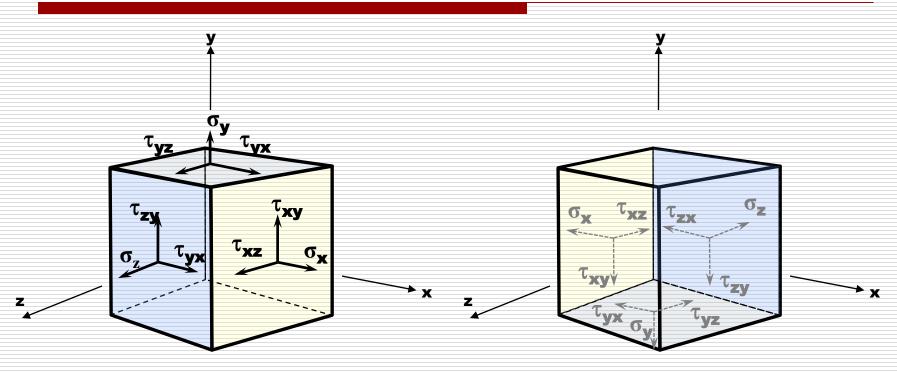
Transformation Matrix

$$T = T2*T1 = \begin{bmatrix} 0.7071 & 0.7071 & 0 \\ -0.6124 & 0.6124 & 0.5 \\ 0.3536 & -0.3536 & 0.866 \end{bmatrix}$$

Transpose of Transformation Matrix

$$T' = \begin{bmatrix} 0.7071 & -0.6124 & 0.3536 \\ 0.7071 & 0.6124 & -0.3536 \\ 0 & 0.5 & 0.866 \end{bmatrix}$$

Stress at a Point Shown in the Tensile (+) Direction



Surfaces with a Positive Directed Area Normal

Surfaces with a Negative Directed Area Normal

Principal Stresses

- \square $\sigma_1, \sigma_2, \sigma_3$
- □ Eigenvalues of Stress Tensor
- Eigenvectors are the direction cosines for the Principal Stresses

Two Dimensional/Plane Stress

■ Transformations

$$\sigma_{x_1} = \frac{\sigma_x + \sigma_y}{2} + \frac{\sigma_x - \sigma_y}{2} \cdot \cos 2\theta + \tau_{xy} \cdot \sin 2\theta$$

$$\sigma_{y_1} = \frac{\sigma_x + \sigma_y}{2} - \frac{\sigma_x - \sigma_y}{2} \cdot \cos 2\theta - \tau_{xy} \cdot \sin 2\theta$$

$$\sigma_{x_1} = -\frac{\sigma_x - \sigma_y}{2} \cdot \sin 2\theta + \tau_{xy} \cdot \cos 2\theta$$

Principal Stresses

$$\sigma_{1,2} = \frac{\sigma_x + \sigma_y}{2} \pm \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2} \qquad \tan 2\theta_p = \frac{2 \cdot \tau_{xy}}{\sigma_x - \sigma_y}$$

$$\tau_{\text{max}} = \sqrt{\left(\frac{\sigma_x - \sigma_y}{2}\right)^2 + \tau_{xy}^2}$$

Three Dimensional Stress Invariants

$$\begin{vmatrix} \sigma_{x} - \sigma_{p} & \tau_{xy} & \tau_{xz} \\ \tau_{xy} & \sigma_{y} - \sigma_{p} & \tau_{yz} \\ \tau_{xz} & \tau_{yz} & \sigma_{z} - \sigma_{p} \end{vmatrix} = 0$$

$$\sigma_{p}^{3} - (\sigma_{x} + \sigma_{y} + \sigma_{z}) \cdot \sigma_{p}^{2}$$

$$+ (\sigma_{x} \cdot \sigma_{y} + \sigma_{y} \cdot \sigma_{z} + \sigma_{x} \cdot \sigma_{z} - \tau_{yz}^{2} - \tau_{zx}^{2} - \tau_{xy}^{2}) \cdot \sigma_{p}$$

$$- (\sigma_{x} \cdot \sigma_{y} \cdot \sigma_{z} + 2 \cdot \tau_{yz} \cdot \tau_{xz} \cdot \tau_{xy} - \sigma_{x} \cdot \tau_{yz}^{2} - \sigma_{y} \cdot \tau_{zx}^{2} - \sigma_{z} \cdot \tau_{xy}^{2}) = 0$$

$$\sigma_p^3 - I_1 \cdot \sigma_p^2 + I_2 \cdot \sigma_p - I_3 = 0$$

Example 1

Determine the principal stresses and their directions for the tensor shown.

$$[\sigma] = \begin{bmatrix} 50 & 10 & 0 \\ 10 & 20 & 40 \end{bmatrix} MPa$$

$$0 & 40 & 30 \end{bmatrix}$$

Solution to Example 1

□ Principal Stress

$$\begin{bmatrix} \sigma_p \end{bmatrix} = \begin{bmatrix} -16.17 & 0 & 0 \\ 0 & 48.3 & 0 \\ 0 & 0 & 67.9 \end{bmatrix} MPa$$

Direction Cosines

$$[T] = \begin{bmatrix} -0.1135 & 0.7509 & -0.6506 \\ 0.9263 & -0.1568 & -0.3425 \\ 0.3592 & 0.6415 & 0.6778 \end{bmatrix}$$

Three Dimensional Mohr's Circle $\sigma_{\mathbf{v}}$ σ_z is present

but not shown

Example 2

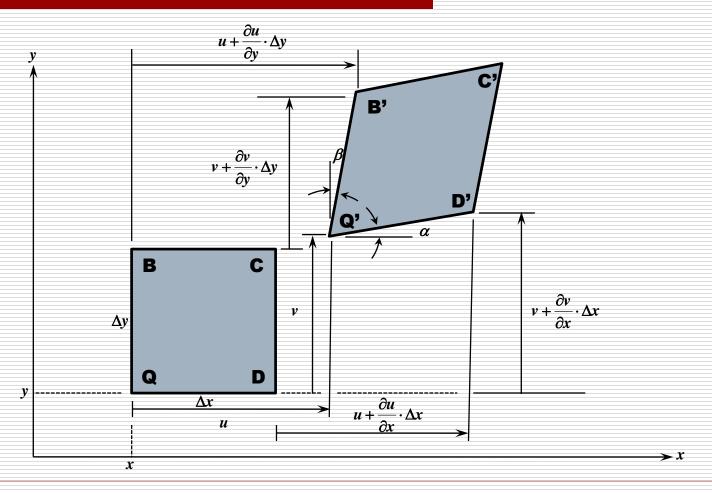
A structural member is found to have an axial stress of 150MPa and a transverse stress of 100MPa. The stress orthogonal to these stresses is zero. Calculate the maximum shear stress in this member at this point.

Example 3

Determine the principal stresses and the maximum shear stress for the following state of stress.

$$[\sigma] = \begin{bmatrix} 12 & 4 & 0 \\ 4 & -8 & 0 \\ 0 & 0 & 6 \end{bmatrix}$$

Strain-Displacement Relationships



Normal Strain - Displacements

$$\varepsilon_{x} = \frac{\partial u}{\partial x}$$

$$\varepsilon_{y} = \frac{\partial v}{\partial y}$$

$$\varepsilon_{x} = \frac{\partial w}{\partial z}$$

Shear Strain - Displacements

$$\gamma_{xy} = \frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}$$

$$\gamma_{xz} = \frac{\partial w}{\partial x} + \frac{\partial u}{\partial z}$$

$$\gamma_{xz} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial z}$$

$$\gamma_{zy} = \frac{\partial v}{\partial z} + \frac{\partial w}{\partial y}$$

Curvature - Displacements

$$\Theta_{xy} = \frac{1}{2} \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right)$$

$$\Theta_{xz} = \frac{1}{2} \left(\frac{\partial u}{\partial z} - \frac{\partial w}{\partial x} \right)$$

$$\Theta_{zy} = \frac{1}{2} \left(\frac{\partial w}{\partial y} - \frac{\partial v}{\partial z} \right)$$

Strain-Displacement Relations Cylindrical System

$$\epsilon_{\rho} = \frac{\partial u_{r}}{\partial r} \quad ; \quad \gamma_{\theta z} = \frac{\partial u_{\theta}}{\partial z} + \frac{1}{r} \frac{\partial w}{\partial \theta}$$

$$\epsilon_{\theta} = \frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta} + \frac{u_{r}}{r} \quad ; \quad \gamma_{rz} = \frac{\partial w}{\partial r} + \frac{\partial u_{r}}{\partial z}$$

$$\epsilon_{z} = \frac{\partial w}{\partial z} \quad ; \quad \gamma_{r\theta} = \frac{1}{r} \cdot \frac{\partial u_{r}}{\partial \theta} + \frac{\partial u_{\theta}}{\partial r} - \frac{u_{\theta}}{r}$$

Compatibility

- Displacements match boundary conditions
- Displacements are single valued
- Displacements are continuous functions of position
- The body must be pieced together; no voids are created in the deformed body

Compatibility

$$\frac{\partial^{2} \gamma_{xy}}{\partial x \cdot \partial y} = \frac{\partial^{2} \varepsilon_{x}}{\partial y^{2}} + \frac{\partial^{2} \varepsilon_{y}}{\partial x^{2}}$$

$$\frac{\partial^{2} \gamma_{yz}}{\partial y \cdot \partial z} = \frac{\partial^{2} \varepsilon_{y}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{z}}{\partial y^{2}}$$

$$\frac{\partial^{2} \gamma_{xz}}{\partial z \cdot \partial z} = \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{z}}{\partial y^{2}}$$

$$\frac{\partial^{2} \gamma_{xz}}{\partial z \cdot \partial z} = \frac{\partial^{2} \varepsilon_{x}}{\partial z^{2}} + \frac{\partial^{2} \varepsilon_{z}}{\partial z^{2}}$$

Compatibility Continued

$$2 \cdot \frac{\partial^2 \varepsilon_x}{\partial y \cdot \partial z} = \frac{\partial}{\partial x} \cdot \left(-\frac{\partial \gamma_{yz}}{\partial x} + \frac{\partial \gamma_{zx}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

$$2 \cdot \frac{\partial^{2} \varepsilon_{y}}{\partial z \cdot \partial x} = \frac{\partial}{\partial y} \cdot \left(\frac{\partial \gamma_{yz}}{\partial x} - \frac{\partial \gamma_{zx}}{\partial y} + \frac{\partial \gamma_{xy}}{\partial z} \right)$$

$$2 \cdot \frac{\partial^2 \varepsilon_z}{\partial x \cdot \partial y} = \frac{\partial}{\partial z} \cdot \left(\frac{\partial \gamma_{yx}}{\partial x} + \frac{\partial \gamma_{zx}}{\partial y} - \frac{\partial \gamma_{xy}}{\partial z} \right)$$

Example

The following displacement field is applied to a certain body where k=10⁻⁴.

$$u=k(2x+y^2), v=k(x^2-3y^2), w=0$$

(a) Show the distorted configuration of a two-dimensional element with sides dx and dy and its lower left corner (point A) initially at the point (2,1,0), i.e., determine the new length and angular position of each side.

Strain Tensor

Strain Transformations

$$T = \begin{bmatrix} n_{x',x} & n_{x',y} & n_{x',z} \\ n_{y',x} & n_{y',y} & n_{y',z} \\ n_{z',x} & n_{z',y} & n_{z',z} \end{bmatrix}$$

$$[\varepsilon]_{x'y'z'} = [T] \cdot [\varepsilon]_{xyz} \cdot [T]^T$$

Two Dimensional/Plane Strain Transformations

General Transformation Equations

$$\varepsilon_{x_1} = \frac{\varepsilon_x + \varepsilon_y}{2} + \frac{\varepsilon_x - \varepsilon_y}{2} \cdot \cos 2\theta + \frac{\gamma_{xy}}{2} \cdot \sin 2\theta$$

$$\frac{\gamma_{x_1y_2}}{2} = -\frac{\varepsilon_x - \varepsilon_y}{2} \cdot \sin 2\theta + \frac{\gamma_{xy}}{2} \cdot \sin 2\theta \cos 2\theta$$

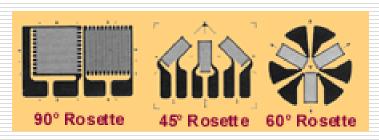
Principal Strains

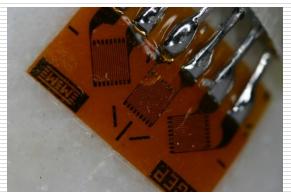
$$\varepsilon_{1,2} = \frac{\varepsilon_x + \varepsilon_y}{2} \pm \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

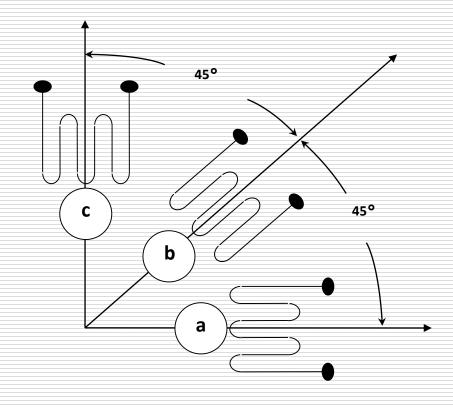
$$\frac{\gamma_{\text{max}}}{2} = \sqrt{\left(\frac{\varepsilon_x - \varepsilon_y}{2}\right)^2 + \left(\frac{\gamma_{xy}}{2}\right)^2}$$

$$\tan 2\theta_p = \frac{\gamma_{xy}}{\varepsilon_x - \varepsilon_y}$$

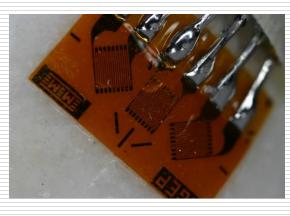
Typical Strain Gage Rosettes

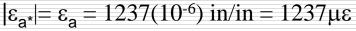






Typical Strain Gage Rosettes





$$|\epsilon_{\text{b*}}|\!\!=\epsilon_{\text{b}}=1270(10^{\text{-}6})$$
 in/in $=1270\mu\epsilon$

$$|\varepsilon_{c^*}| = \varepsilon_c = 402(10^{-6}) \text{ in/in} = 402 \mu \epsilon$$

▲ axial

(1)

Transverse Sensitivity

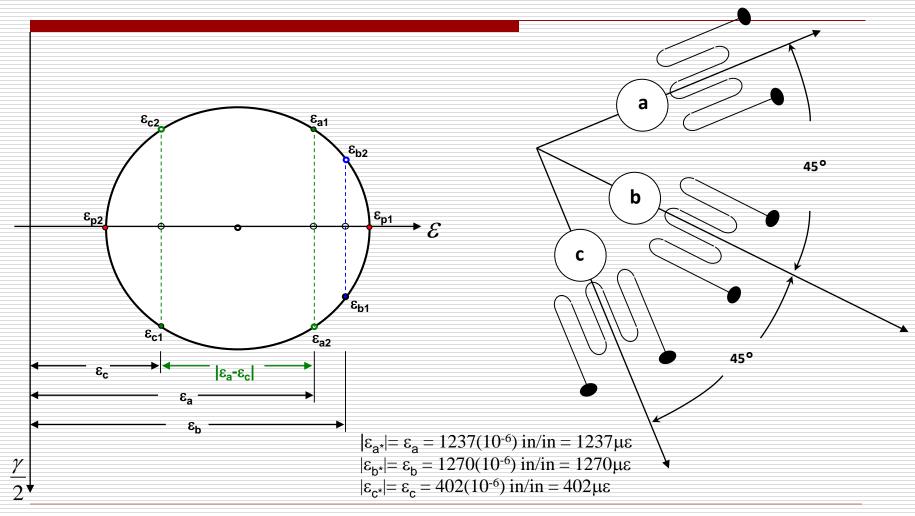
(3)

$$\varepsilon_a = \frac{\hat{\varepsilon}_a \cdot (1 - \nu_0 \cdot K_a) - K_a \cdot \hat{\varepsilon}_c \cdot (1 - \nu_0 \cdot K_c)}{1 - K_a \cdot K_c}$$

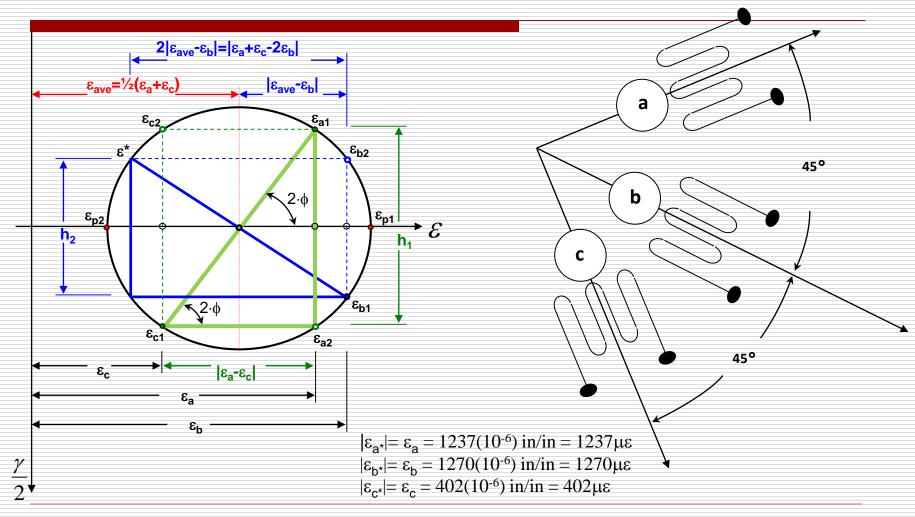
$$\varepsilon_b = \frac{\hat{\varepsilon}_b \cdot (1 - \nu_0 \cdot K_b)}{1 - K_b} - \frac{K_b \cdot [\hat{\varepsilon}_a \cdot (1 - \nu_0 \cdot K_a) \cdot (1 - K_c) + \hat{\varepsilon}_c \cdot (1 - \nu_0 \cdot K_c) \cdot (1 - K_a)]}{(1 - K_a \cdot K_c) \cdot (1 - K_b)}$$

$$\varepsilon_c = \frac{\hat{\varepsilon}_c \cdot (1 - v_0 \cdot K_c) - K_c \cdot \hat{\varepsilon}_a \cdot (1 - v_0 \cdot K_a)}{1 - K_a \cdot K_c}$$

Mohr's Circle for Strain

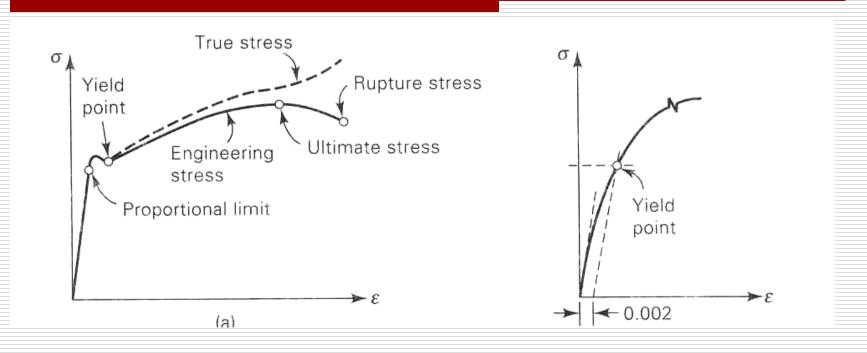


Mohr's Circle for Strain



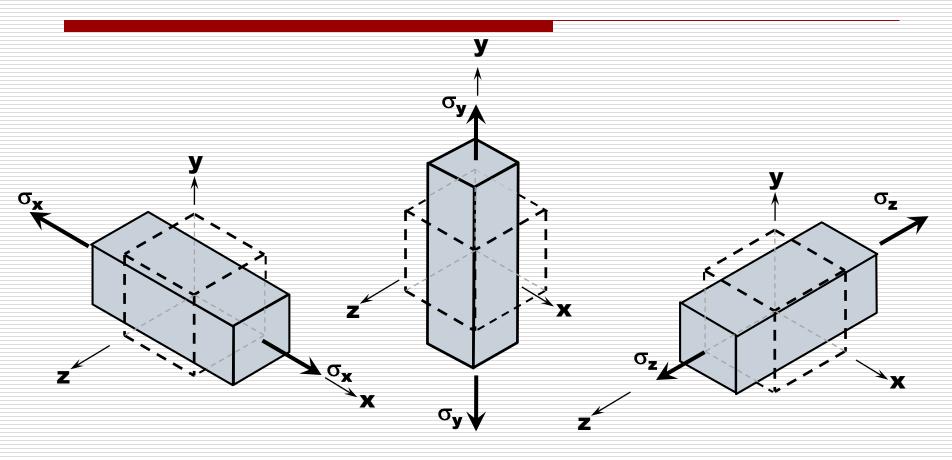
Stress-Strain Curve

True Stress-Strain versus Engineering Stress-Strain



$$\sigma = k \cdot \frac{P}{A} \qquad \varepsilon = \int_{L_0}^{L} \frac{dl}{l} = \ln \frac{L}{L_0} = \ln (1 + \varepsilon_0)$$

Relationship Between Stress and Strain



Stress-Strain Relations

$$\varepsilon_{x} = \frac{1}{E} \cdot \left[\sigma_{x} - \nu \cdot (\sigma_{y} + \sigma_{z}) \right]$$

$$\gamma_{yz} = \frac{\tau_{yz}}{G}$$

$$\varepsilon_{y} = \frac{1}{E} \cdot \left[\sigma_{y} - \nu \cdot (\sigma_{x} + \sigma_{z}) \right]$$

$$\gamma_{xz} = \frac{\tau_{xz}}{G}$$

$$\varepsilon_z = \frac{1}{E} \cdot \left[\sigma_z - \nu \cdot (\sigma_y + \sigma_x) \right]$$

$$\gamma_{xy} = \frac{\tau_{xy}}{G}$$

Matrix Form of Stress-Strain Relations

$$\begin{cases} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{bmatrix}$$

Matrix Form of Stress-Strain Relations

$$\begin{cases}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
\gamma_{xz} \\
\gamma_{xy}
\end{cases} =
\begin{cases}
\frac{1}{E} - \frac{\nu}{E} - \frac{\nu}{E} & 0 & 0 & 0 \\
-\frac{\nu}{E} - \frac{1}{E} - \frac{\nu}{E} & 0 & 0 & 0 \\
-\frac{\nu}{E} - \frac{\nu}{E} - \frac{1}{E} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{2 \cdot (1 + \nu)}{E} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{2 \cdot (1 + \nu)}{E} & 0
\end{cases} \cdot
\begin{cases}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{xz} \\
\tau_{xz} \\
\tau_{xy}
\end{cases}$$

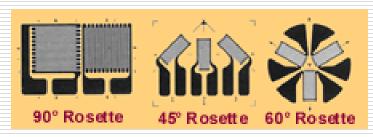
Strain-Stress Relations

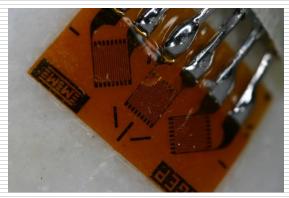
$$\sigma_{x} = \frac{E}{(1+\nu)\cdot(1-2\cdot\nu)} \Big[(1-\nu)\cdot\varepsilon_{x} + \nu\cdot(\varepsilon_{y} + \varepsilon_{z}) \Big]$$

$$\sigma_{y} = \frac{E}{(1+\nu)\cdot(1-2\cdot\nu)} \left[(1-\nu)\cdot\varepsilon_{y} + \nu\cdot(\varepsilon_{x} + \varepsilon_{z}) \right]$$

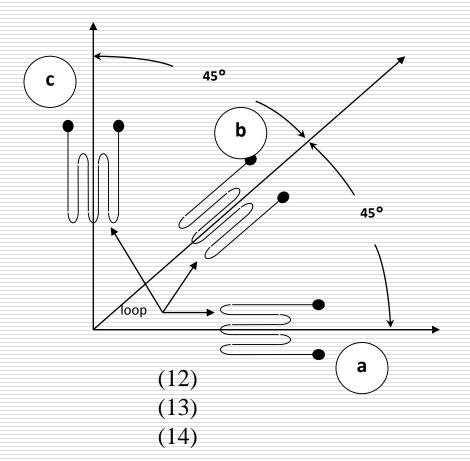
$$\sigma_{z} = \frac{E}{(1+\nu)\cdot(1-2\cdot\nu)} \left[(1-\nu)\cdot\varepsilon_{z} + \nu\cdot(\varepsilon_{x} + \varepsilon_{y}) \right]$$

Typical Strain Gage Rosettes





$$\begin{split} |\epsilon_{a^*}| &= \epsilon_a = 1237(10^{\text{-}6}) \text{ in/in} = 1237 \mu\epsilon \\ |\epsilon_{b^*}| &= \epsilon_b = 1270(10^{\text{-}6}) \text{ in/in} = 1270 \mu\epsilon \\ |\epsilon_{c^*}| &= \epsilon_c = 402(10^{\text{-}6}) \text{ in/in} = 402 \mu\epsilon \end{split}$$



Anisotropic Materials

- □ ISOTROPIC material properties are the same in all directions
- ANISOTROPIC material properties change with direction
- HOMOGENEOUS material of uniform composition throughout and whose properties are constant at every point
- HETEROGENEOUS material uniformity within a body consisting of dissimilar constituents separately identifiable

Assumptions

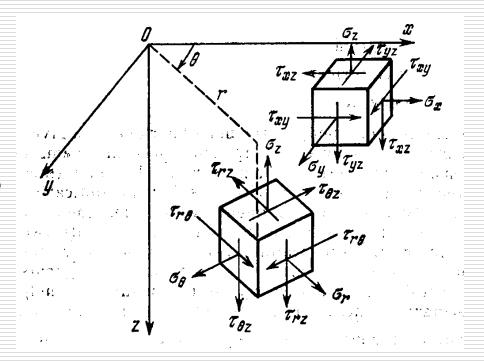
- The elastic body is a continuous medium
 - the body is a solid
- ☐ The relation between the components of strain and the projections of displacement and their first derivatives with respect to the coordinates is linear
 - only small strains are considered

Assumptions

- The stress-strain relations are linear
 - the material follows the generalized Hooke's law
 - the coefficients in these linear relations may be either constant (homogeneous body) or variable - functions of position, continuous or discontinuous (nonhomogeneous body)
- Theory is based on classical linear theory of homogeneous or non-homogeneous elastic bodies

Major Notation

- □ Coordinate Systems
 - Cartesian x, y, z
 - **Cylindrical** \mathbf{r} , θ , \mathbf{z}
 - Spherical ρ , θ , ϕ
- Stresses acting on planes normal to the co-ordinate directions
 - one normal = normal Stress
 - two tangential = shearing stresses



Stress-Strain Relations 36 (81) Constants

Stiffness

$$\begin{bmatrix} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{bmatrix} = \begin{bmatrix} C_{11} & C_{12} & C_{13} & C_{14} & C_{15} & C_{16} \\ C_{21} & C_{22} & C_{23} & C_{24} & C_{25} & C_{26} \\ C_{31} & C_{32} & C_{33} & C_{34} & C_{35} & C_{63} \\ C_{41} & C_{42} & C_{43} & C_{44} & C_{45} & C_{64} \\ C_{51} & C_{52} & C_{53} & C_{54} & C_{55} & C_{65} \\ C_{61} & C_{62} & C_{63} & C_{64} & C_{54} & C_{66} \end{bmatrix} \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}$$

Compliance

$$\begin{bmatrix} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \boldsymbol{\epsilon}_3 \\ \boldsymbol{\gamma}_{23} \\ \boldsymbol{\gamma}_{13} \\ \boldsymbol{\gamma}_{12} \end{bmatrix} = \begin{bmatrix} \mathbf{S}_{11} & \mathbf{S}_{12} & \mathbf{S}_{13} & \mathbf{S}_{14} & \mathbf{S}_{15} & \mathbf{S}_{16} \\ \mathbf{S}_{21} & \mathbf{S}_{22} & \mathbf{S}_{23} & \mathbf{S}_{24} & \mathbf{S}_{25} & \mathbf{S}_{26} \\ \mathbf{S}_{31} & \mathbf{S}_{32} & \mathbf{S}_{33} & \mathbf{S}_{34} & \mathbf{S}_{35} & \mathbf{S}_{36} \\ \mathbf{S}_{41} & \mathbf{S}_{42} & \mathbf{S}_{43} & \mathbf{S}_{44} & \mathbf{S}_{45} & \mathbf{S}_{46} \\ \mathbf{S}_{51} & \mathbf{S}_{52} & \mathbf{S}_{53} & \mathbf{S}_{54} & \mathbf{S}_{55} & \mathbf{S}_{56} \\ \mathbf{S}_{61} & \mathbf{S}_{62} & \mathbf{S}_{63} & \mathbf{S}_{64} & \mathbf{S}_{65} & \mathbf{S}_{66} \end{bmatrix} \cdot \begin{bmatrix} \boldsymbol{\sigma}_1 \\ \boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_3 \\ \boldsymbol{\tau}_{23} \\ \boldsymbol{\tau}_{13} \\ \boldsymbol{\tau}_{12} \end{bmatrix}$$

Symmetry of the Stiffness Matrix

- Elastic Potential/Strain Energy Density
 - Incremental work per unit volune
 - \blacksquare dW= $\sigma_i d\epsilon_i$
- Using the Stress-Strain Relations
 - \blacksquare dW=C_{ij} ϵ_j d ϵ_j
- Work per Unit Volume
 - W=1/2 $C_{ii} \varepsilon_i \varepsilon_i$
- \square dW/d ϵ_i = $C_{ij}\epsilon_j$ or dW²/d ϵ_i d ϵ_j = C_{ij} thus C_{ij} = C_{ji}

Stiffness and Compliance down from 36 to 21 Constants

Stiffness

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{cases} \mathbf{C}_{11} & \mathbf{C}_{12} & \mathbf{C}_{13} & \mathbf{C}_{14} & \mathbf{C}_{15} & \mathbf{C}_{16} \\ \mathbf{C}_{12} & \mathbf{C}_{22} & \mathbf{C}_{23} & \mathbf{C}_{24} & \mathbf{C}_{25} & \mathbf{C}_{26} \\ \mathbf{C}_{13} & \mathbf{C}_{23} & \mathbf{C}_{33} & \mathbf{C}_{34} & \mathbf{C}_{35} & \mathbf{C}_{63} \\ \mathbf{C}_{14} & \mathbf{C}_{24} & \mathbf{C}_{34} & \mathbf{C}_{44} & \mathbf{C}_{45} & \mathbf{C}_{64} \\ \mathbf{C}_{15} & \mathbf{C}_{25} & \mathbf{C}_{35} & \mathbf{C}_{45} & \mathbf{C}_{55} & \mathbf{C}_{65} \\ \mathbf{C}_{16} & \mathbf{C}_{26} & \mathbf{C}_{36} & \mathbf{C}_{46} & \mathbf{C}_{56} & \mathbf{C}_{66} \end{cases}$$

One Plane of Elastic Symmetry

Monoclinic 13 Independent Constants

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{cases} C_{11} & C_{12} & C_{13} & 0 & 0 & C_{16} \\ C_{12} & C_{22} & C_{23} & 0 & 0 & C_{26} \\ C_{13} & C_{23} & C_{33} & 0 & 0 & C_{63} \\ 0 & 0 & 0 & C_{44} & C_{45} & 0 \\ 0 & 0 & 0 & C_{45} & C_{55} & 0 \\ C_{16} & C_{26} & C_{36} & 0 & 0 & C_{66} \end{cases} \cdot \begin{cases} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{cases}$$

Three Planes of Elastic Symmetry

Orthotropic Body 9 Independent Constants

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{cases} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{13} & C_{23} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & C_{66} \end{cases} \cdot \begin{bmatrix} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{13} \\ \gamma_{12} \end{bmatrix}$$

Stiffness Matrix Orthotropic Body

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{cases} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{21} & C_{22} & C_{23} & 0 & 0 & 0 \\ C_{31} & C_{32} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{55} & 0 \\ 0 & 0 & 0 & 0 & 0 & C_{66} \end{cases} \cdot \begin{cases} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{cases}$$

$$\begin{split} & C_{11} = \frac{S_{22} \cdot S_{33} - S_{23} \cdot S_{23}}{S} & C_{12} = \frac{S_{13} \cdot S_{23} - S_{12} \cdot S_{33}}{S} & C_{44} = \frac{1}{S_{44}} \\ & C_{11} = \frac{S_{33} \cdot S_{11} - S_{13} \cdot S_{13}}{S} & C_{13} = \frac{S_{12} \cdot S_{23} - S_{13} \cdot S_{22}}{S} & C_{55} = \frac{1}{S_{55}} \\ & C_{11} = \frac{S_{11} \cdot S_{22} - S_{12} \cdot S_{12}}{S} & C_{23} = \frac{S_{12} \cdot S_{13} - S_{23} \cdot S_{11}}{S} & C_{66} = \frac{1}{S_{66}} \end{split}$$

$$C_{11} = \frac{\left(1 - \upsilon_{23} \cdot \upsilon_{32}\right) \cdot E_{1}}{1 - \upsilon}$$

$$C_{12} = \frac{\left(\upsilon_{21} - \upsilon_{31} \cdot \upsilon_{23}\right) \cdot E_{1}}{1 - \upsilon} = \frac{\left(\upsilon_{12} - \upsilon_{32} \cdot \upsilon_{13}\right) \cdot E_{2}}{1 - \upsilon}$$

$$C_{13} = \frac{\left(\upsilon_{31} - \upsilon_{21} \cdot \upsilon_{32}\right) \cdot E_{1}}{1 - \upsilon} = \frac{\left(\upsilon_{13} - \upsilon_{12} \cdot \upsilon_{23}\right) \cdot E_{3}}{1 - \upsilon}$$

$$C_{22} = \frac{\left(1 - \upsilon_{13} \cdot \upsilon_{31}\right) \cdot E_{2}}{1 - \upsilon}$$

$$C_{23} = \frac{\left(\upsilon_{32} - \upsilon_{12} \cdot \upsilon_{31}\right) \cdot E_{2}}{1 - \upsilon} = \frac{\left(\upsilon_{23} - \upsilon_{21} \cdot \upsilon_{13}\right) \cdot E_{3}}{1 - \upsilon}$$

$$C_{33} = \frac{\left(1 - \upsilon_{12} \cdot \upsilon_{21}\right) \cdot E_{3}}{1 - \upsilon}$$

$$C_{44} = G_{23} \quad C_{55} = G_{13} \quad C_{66} = G_{12}$$

$$\upsilon = \upsilon_{12} \cdot \upsilon_{21} + \upsilon_{23} \cdot \upsilon_{32} + \upsilon_{31} \cdot \upsilon_{13}$$

Compliance Matrix Orthotropic Body

$$\begin{cases} \boldsymbol{\epsilon}_1 \\ \boldsymbol{\epsilon}_2 \\ \boldsymbol{\epsilon}_3 \\ \boldsymbol{\gamma}_{23} \\ \boldsymbol{\gamma}_{13} \\ \boldsymbol{\gamma}_{12} \end{cases} = \begin{cases} \mathbf{S}_{11} & \mathbf{S}_{12} & \mathbf{S}_{13} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}_{21} & \mathbf{S}_{22} & \mathbf{S}_{23} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{S}_{31} & \mathbf{S}_{32} & \mathbf{S}_{33} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{S}_{44} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{S}_{55} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{S}_{66} \end{cases} \cdot \begin{cases} \boldsymbol{\sigma}_1 \\ \boldsymbol{\sigma}_2 \\ \boldsymbol{\sigma}_3 \\ \boldsymbol{\tau}_{23} \\ \boldsymbol{\tau}_{13} \\ \boldsymbol{\tau}_{12} \end{cases}$$

$$S_{11} = \frac{1}{E_{1}} \qquad S_{12} = -\frac{\upsilon_{21}}{E_{2}} \qquad S_{13} = -\frac{\upsilon_{31}}{E_{3}}$$

$$S_{21} = -\frac{\upsilon_{12}}{E_{1}} \qquad S_{22} = \frac{1}{E_{2}} \qquad S_{23} = -\frac{\upsilon_{32}}{E_{3}}$$

$$S_{31} = -\frac{\upsilon_{13}}{E_{1}} \qquad S_{32} = -\frac{\upsilon_{23}}{E_{2}} \qquad S_{33} = \frac{1}{E_{3}}$$

$$S_{44} = \frac{1}{G_{23}} \qquad S_{55} = \frac{1}{G_{13}} \qquad S_{66} = \frac{1}{G_{12}}$$

Relationship Between S and C

$$C_{11} = \frac{S_{22} \cdot S_{33} - S_{23}^2}{S}$$
; $C_{44} = \frac{1}{S_{44}}$; $C_{12} = \frac{S_{13}S_{23} - S_{12}S_{33}}{S}$

$$C_{22} = \frac{S_{33} \cdot S_{11} - S_{13}^2}{S}$$
; $C_{55} = \frac{1}{S_{55}}$; $C_{13} = \frac{S_{12}S_{23} - S_{13}S_{22}}{S}$

$$C_{33} = \frac{S_{11} \cdot S_{22} - S_{12}^2}{S}$$
; $C_{66} = \frac{1}{S_{66}}$; $C_{23} = \frac{S_{12}S_{13} - S_{23}S_{11}}{S}$

$$S = S_{11}S_{22}S_{33} - S_{11}S_{23}^2 - S_{22}S_{13}^2 - S_{33}S_{12}^2 + 2S_{12}S_{23}S_{13}$$

One Plane in which the Mechanical Properties are Equal

Transversely Isotropic 6 Independent Constants

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{cases} C_{11} & C_{12} & C_{13} & 0 & 0 & 0 \\ C_{12} & C_{22} & C_{13} & 0 & 0 & 0 \\ C_{13} & C_{13} & C_{33} & 0 & 0 & 0 \\ 0 & 0 & 0 & C_{44} & 0 & 0 \\ 0 & 0 & 0 & 0 & C_{44} & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(C_{11} - C_{12}) \end{cases} \cdot \begin{cases} \varepsilon_1 \\ \varepsilon_2 \\ \varepsilon_3 \\ \gamma_{13} \\ \gamma_{12} \end{cases}$$

Material Properties Equal in all Directions

Isotropic 2 Independent Constants

$$\begin{cases} \sigma_1 \\ \sigma_2 \\ \sigma_3 \\ \tau_{23} \\ \tau_{13} \\ \tau_{12} \end{cases} = \begin{cases} C_{11} & C_{12} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{11} & C_{12} & 0 & 0 & 0 \\ C_{12} & C_{12} & C_{11} & 0 & 0 & 0 \\ 0 & 0 & 0 & 2(C_{11} - C_{12}) & 0 & 0 \\ 0 & 0 & 0 & 0 & 2(C_{11} - C_{12}) & 0 \\ 0 & 0 & 0 & 0 & 0 & 2(C_{11} - C_{12}) \end{cases} . \begin{cases} \epsilon_1 \\ \epsilon_2 \\ \epsilon_3 \\ \gamma_{23} \\ \gamma_{13} \\ \gamma_{12} \end{cases}$$

Matrix Form of Stress-Strain Relations

$$\begin{cases} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{z} \\ \gamma_{yz} \\ \gamma_{xz} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{1}{G} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{G} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{G} \end{bmatrix} \begin{bmatrix} \sigma_{x} \\ \sigma_{y} \\ \sigma_{z} \\ \tau_{yz} \\ \tau_{xz} \\ \tau_{xy} \end{bmatrix}$$

Matrix Form of Stress-Strain Relations

$$\begin{cases} \mathcal{E}_{x} \\ \mathcal{E}_{y} \\ \mathcal{E}_{z} \\ \gamma_{yz} \\ \gamma_{xy} \end{cases} = \begin{bmatrix} \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & \frac{1}{E} & -\frac{\nu}{E} & 0 & 0 & 0 \\ -\frac{\nu}{E} & -\frac{\nu}{E} & \frac{1}{E} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{2 \cdot (1+\nu)}{E} & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{2 \cdot (1+\nu)}{E} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{2 \cdot (1+\nu)}{E} \end{cases}$$

Example 1

Given the following state of stress, determine the state of strain. E=200Gpa, v=0.3

$$[\sigma] = \begin{bmatrix} 12 & 6 & 9 \\ 6 & 10 & 3 \end{bmatrix} MPa$$
 $[9 & 3 & 14]$

Example 2

Given the following state of strain, determine the state of stress. E=200GPa, v=0.3

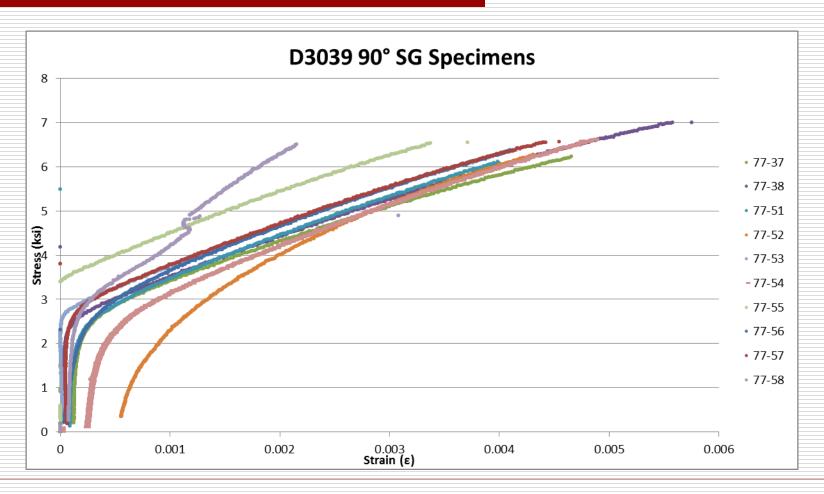
$$\begin{bmatrix} \varepsilon \end{bmatrix} = \begin{bmatrix} 3 & -1 & 2 \\ -1 & 0 & -4 \\ 2 & -4 & 5 \end{bmatrix} \times 10^{-4}$$

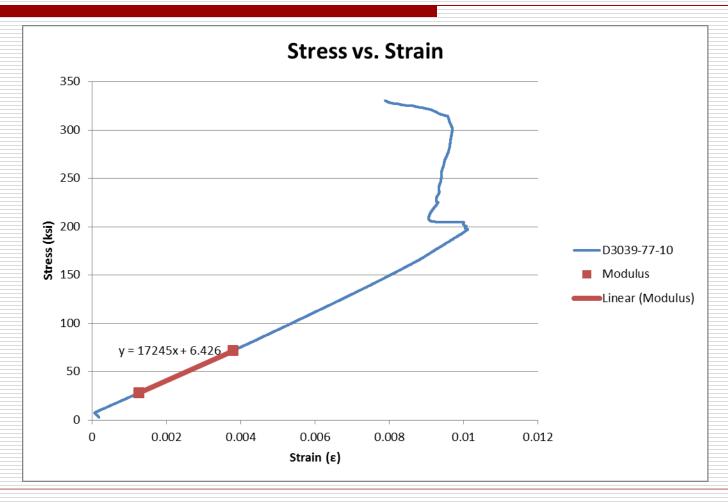
Typical Constituent Properties

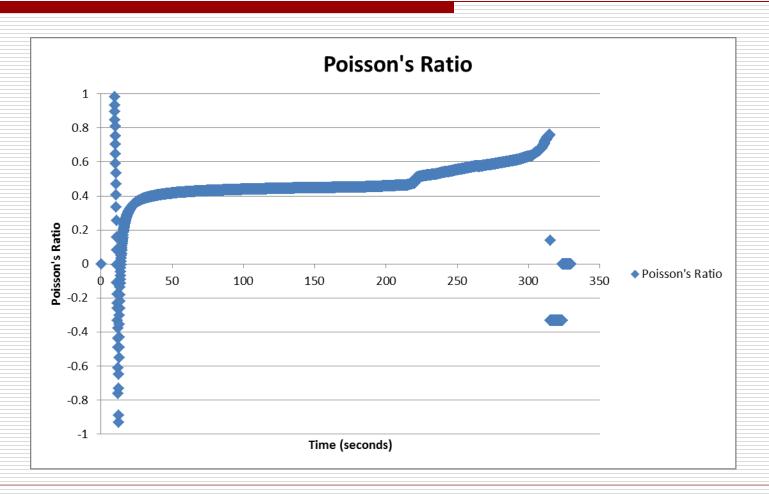
	Graphite	Graphite	Kevlar 49	E-Glass	S-Glass	
	AS4 & T300	HMS & VS0032	reviai 40	L Glass	O Glass	
E _∟ (GPa)	220	370	124	72.3	85.4	
E _⊤ (GPa)	22	7.6	6.9	72.3	85.4	
$ u_{L}$	0.30	0.41	0.33	0.2	0.22	
$ u_{T}$	0.35	0.45	0.33	0.2	0.22	
G _∟ (GPa)	22	15.2	2.8	30.1	35.1	
G _⊤ (GPa)	8.3	2.8	2.8	30.1	35.1	
σ ^{tu} ∟ (GPa)	2.8	1.2	2.8	3.4	4.5	
ε ^{tu} ∟ (GPa)	1.3	0.3	2.5	4.8	5.4	
α _L (10 ⁻⁶ /°C)	-1.3	-0.7	-1.8	12.0	12.0	
α _τ (10 ⁻⁶ /°C)	7.0	9.7	54	12.0	12.0	
K _∟ (cal/s [.] cm [.] °C)	49(10 ⁻³)	20(10 ⁻³)	6.9	2.3(10 ⁻³)	2.3(10 ⁻³)	
K _L (cal/s⁻cm⁻°C)	3.5(10 ⁻³)	4.2(10 ⁻³)	1.0	2.3(10 ⁻³)	2.3(10 ⁻³)	
ρ (g/cm³)	1.72	1.99	1.44	2.55	2.49	

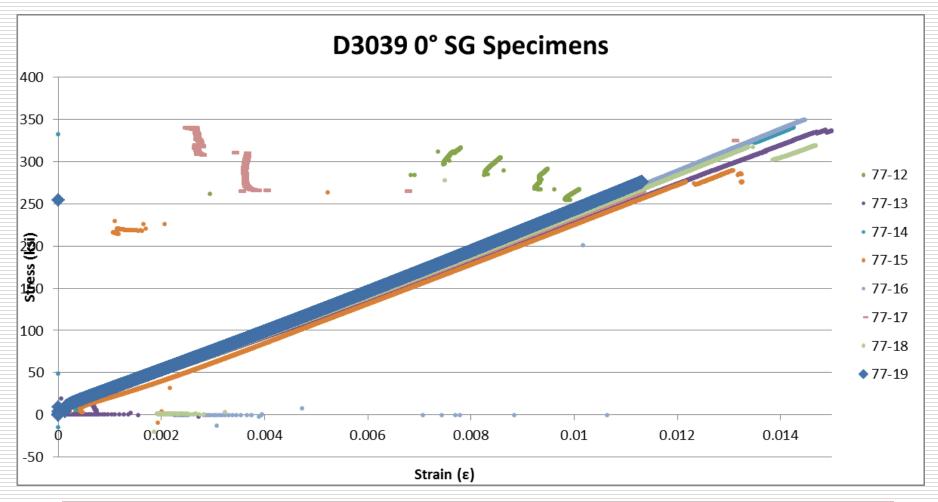
Typical Composite Properties

	Graphite- Polymer	Glass-Polymer	Aluminum
E₁ (Gpa)	155.0	50.0	72.4
E₂ (Gpa)	12.10	15.20	72.4
E₃ (Gpa)	12.10	15.20	72.4
V ₂₃	0.458	0.428	0.3
ν_{13}	0.248	0.254	0.3
V ₁₂	0.248	0.254	0.3
G ₂₃ (Gpa)	3.20	3.28	27.8
G ₁₃ (Gpa)	4.40	4.70	27.8
G ₁₂ (Gpa)	4.40	4.70	27.8
α ₁ (10 ⁻⁶ /°C)	-0.018	6.34	22.5
α ₂ (10 ⁻⁶ /°C)	24.3	23.3	22.5
α ₃ (10 ⁻⁶ /°C)	24.3	23.3	22.5
β ₁ (10 ⁻⁶ /%M)	146.0	434.	0
β ₂ (10 ⁻⁶ /%M)	4770	6320	0
β ₃ (10 ⁻⁶ /%M)	4770	6320	0

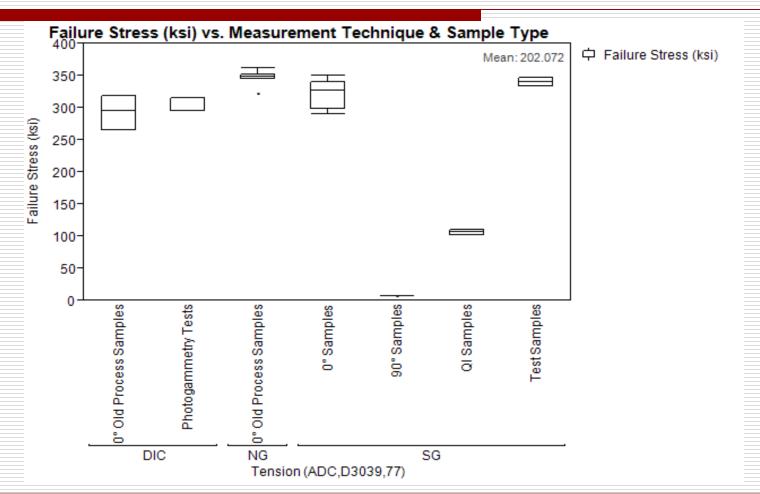


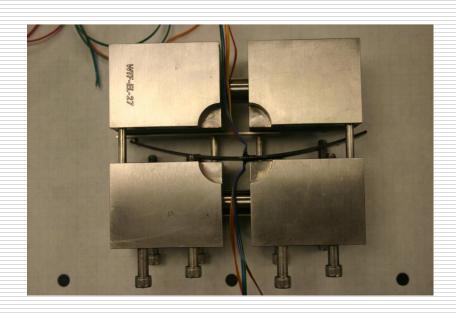




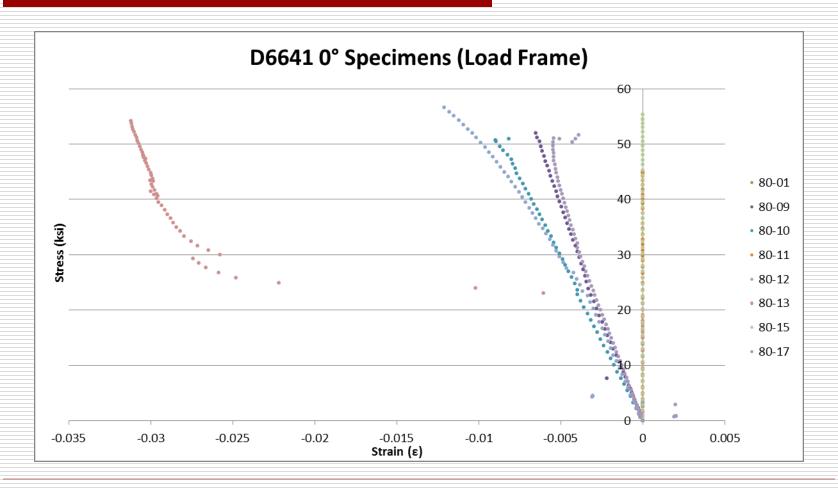


Typical Composite Data Summary

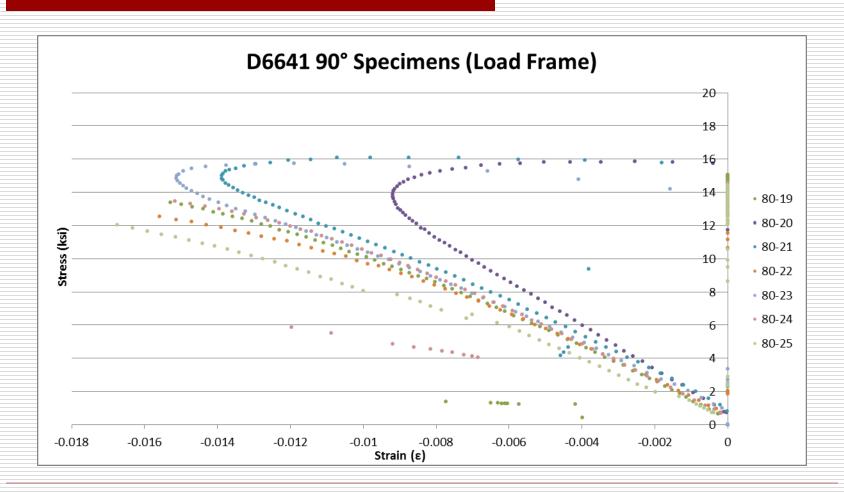




Typical Composite Compression Data



Typical Composite Compression Data



Restrictions on Engineering Constants - Isotropic

- ☐ Shear Modulus
 - G=E/2(1+v)
 - v>-1
- □ Hydrostatic Pressure $\sigma_x = \sigma_y = \sigma_z = -p$
 - The sum of the normal or extensional strains

 - K- Bulk Modulus = E/ 3(1-2v)
 - v<1/2

Restrictions on Engineering Constants - Orthotropic

- \square S₁₁, S₂₂, S₃₃, S₄₄, S₅₅, S₆₆ > 0
- \Box C₁₁, C₂₂, C₃₃, C₄₄, C₅₅, C₆₆ > 0
- \square (1- $\vee_{23}\vee_{32}$)>0, (1- $\vee_{13}\vee_{31}$)>0, (1- $\vee_{12}\vee_{21}$)>0
- □ See Jones pp 68-69